齒輪感應淬火操作要點是什么?
1)齒輪全齒加熱淬火時,應在淬火機床上進行,齒輪與定位心軸的間隙應≤0. 40mm,定位心軸臺階高為5~10mm即可,太大時會對齒輪加熱有影響。
2)雙聯齒輪淬火時,當大、小齒輪的距離≤15mm時,先淬大齒輪,后淬小齒輪。加熱小齒輪時,為防止將已淬硬的齒面加熱,可采用三角形截面感應器,或用銅板屏蔽的方法。對于直徑不大的雙聯齒輪,為提率,也可采用雙圈感應器串聯的方法一次完成淬火。
3)具有內外齒的齒輪淬火時,應先淬內齒輪,后淬外齒輪。必要時可用水冷卻內齒輪。
4)端面有離合卡爪的齒輪淬火時,應先淬卡爪,后淬齒輪。必要時可用水冷卻卡爪。
5)在單件或零星生產中,為操作方便和省去制作感應器的過程,可采取一些簡便的淬火方法。例如:用普通外圓感應器加熱錐齒輪。齒圈感應加熱參數的選擇現有的加熱方式是采用中頻電源,沿齒廓整體旋轉加熱達到淬火溫度后,噴冷卻介質,要達到齒頂、齒根均勻的硬化層分布,使齒圈得到接近仿形淬火效果,選擇合適的加熱功率、加熱時間、預冷時間非常重要。將感應器傾斜一定角度,使感應器低端靠近錐齒輪大端,感應器靠近錐齒輪小端,調整好感應器傾斜角度及其與錐齒輪的間隙,使錐齒輪在感應器中旋轉,即可獲得均勻加熱。當用低高度感應器加熱高度較高的圓柱齒輪時,可先加熱齒輪的中間部位,然后上下移動齒輪,使齒輪沿齒寬方向溫度均勻后即可冷卻淬火。
6)大模數齒輪采用單齒連續加熱淬火時,為保證感應器與齒部間隙的一致性,一般采用靠模對齒溝定位。
凸輪軸采用淬火設備進行淬火熱處理,其感應器是怎么樣的呢?
凸輪感應器有圓環形與仿形兩種。發動機凸輪感應器大都采用圓環形有效圈。具體采用何種工藝主要由客戶要求、自身工藝控制水平及生產效率成本等因素而定。為防止相鄰凸輪或軸頸受到磁場影響而回火,因此,需要在有效圈上跨上導磁體束,既提高感應器的效率,又防止磁力線散射。早期的凸輪感應器在有效圈兩端裝上導磁體板與短路環,同樣具有屏蔽效果,但損耗較大,現在已經被淘汰。
凸輪感應器有時采用雙孔串聯,主要是為了利用變頻電源的功率,一般凸輪軸的軸頸數量少(如3個),而加熱表面積大,凸輪則數量多(如8個)而加熱面積小。因此,當采用雙工位凸輪軸淬火機時,雙孔凸輪感應器與單孔軸頸感應器交替工作,能得到恰當的匹配。
凸輪軸軸頸感應器一般為一次加熱帶噴液結構,特殊尺寸的軸頸也有采用掃描淬火的。制動凸輪感應器,由于工件要求的淬硬部位為兩個圓弧面,現代制動凸輪感應器大都設計成仿形結構。大型軸承圈滾道中頻感應淬火鋼平面滾道軸承是火箭、、發射裝置中用于回轉支承的重要部件。為避免凸輪尖部溫度過高,有些感應器設計時,針對桃尖部裝有針形閥結構,凸輪加熱時,針閥小孔噴出微小的淬火冷卻介質,進行溫度調整。
凸輪軸采用淬火設備進行淬火熱處理,其熱處理工藝主要是通過感應器實施的。因此,了解凸輪軸的淬火感應器具有非常重要的現實意義。
齒輪雙頻感應加熱過程及齒輪材質的選擇
雙頻加熱的原理是使用低高兩種頻率的熱源。首先,以較低頻率的熱源加熱(3—10kHz),為齒輪預熱提供所需能量。
隨后,立即進行高頻熱源加熱,頻率范圍100-250kHz之間。頻率選擇依齒輪尺寸及周節大小而定。高頻熱源將迅速使全部齒輪外表面加熱至淬火溫度,然后齒輪立即淬火,獲得設計所規定的硬度。
在雙頻加熱中,固定在心軸上旋轉著的齒輪接受預熱,隨后一個快速“脈沖使之達到終適宜的淬火溫度后,工件被送入水中淬火。全部過程共需30秒鐘。
這一過程為計算機所控制。由于加熱速度快,表面無氧化、脫碳現象,外觀質量及心部材料的性能仍保持不變。
制造齒輪有多種材料,從工藝及經濟的觀點出發,鋼得到廣泛應用。
含碳量決定鋼能達到的硬度。通常用于感應熱處理的鋼,視其表面的設計硬度要求,含碳量一般為0.40,0.50或0.60%為宜。
要使零件在局部加熱之后淬火硬化,鋼的含碳量必須達到設計硬度的要求。
雙頻感應淬火解決這一問題的辦法是,嚴格控制熱處理變形,使變形量限制在太多數齒輪的設計要求范圍之內。
齒輪淬火處理有其特點,雙頻感應處理是各種方法中較理想的。在常規處理中,要同時滿足一定的硬化層深度及變形要求是困難的,因為兩者會相互影響,相互制約。淬火機床上的中頻變壓器連接加熱用感應器一起可沿車軸縱向上下移動,移動速度采用變頻連續可調。而雙頻感應方法僅對齒輪的局部提供淬火所必須的能量(比常規生產減少2—3倍),因此,變形范圍及硬化深度均達到設計要求。